
Object-oriented programming
in JavaScript

1

What is an object?
An object combines state, behavior, and identity.

→ State is data, known as attributes or properties.
→ Behaviors are known as methods. Methods are

just functions that are defined as part of an
object.

→ Identity is the object's class.

2

Class

A class is a blueprint for an object. In JavaScript,
classes normally have names starting with capital

letters.
let students = new Set()

Set is a class; students is an object.

3

Composition
A person has a job, has family members, has

communities.
Person
 Job
 Person[] (family)
 Community[]

Building objects out of other objects is called
composition.

4

Is this better?
→ Claimed benefits
→Code reuse
→Improved software maintainability
→Better design: OOP forces programmers to spend

more time in design
→Encapsulation: once an object is created, knowledge

of its implementation is not necessary to use it
5

What does a JavaScript object look like?
let employee = {
 name: "Phoenix Carter",
 jobTitle: "Front-End Developer",
 startDate: new Date(2018, 7, 1),
 baseSalary: 68000
}

6

But that doesn't have a class!
True. Objects in JavaScript are unusual.

→ They can be created without a class.
→ They don't technically have a class.
→ They are used in the same way hashes/maps/

dictionaries are used in other languages.

7

Can objects without a class have methods?
YES! In JavaScript, we can use functions as values in an object.

let phoenix = {
 name: "Phoenix Carter",
 startDate: new Date(2018, 8, 1),
 getFirstName: function () {
 return this.name.split(" ")[0]
 }
}

phoenix.getFirstName() // => Phoenix
8

What is this?
→ this is like a pronoun.
→ this refers to the object that invokes the function

where this is used.

It changes depending on its context (scope).

9

let getFirstName = function () {
 let fullName = this.name.split(" ")
 return fullName[0]
}

let phoenix = {
 name: "Phoenix Carter",
 getFirstName: getFirstName
}

let morgan = {
 name: "Morgan Nevada",
 getFirstName: getFirstName
}

phoenix.getFirstName() // => what will this return?
morgan.getFirstName() // => what will this return?

10

But what about new Date()?
If objects in JS don't have a class to act as a

blueprint, what is happening with new Date()?!

11

Prototypes
Objects in JavaScript have a prototype. This is another object that attributes

and methods are delegated to.

// NOTE: You will never have to do this!
let Employee = {
 getFirstName: function () {
 return this.name.split(" ")[0]
 }
}

let phoenix = Object.create(Employee); // what do you think happens here?

Object.assign(phoenix, { name: "Phoenix Carter",
 startDate: new Date(2017, 8, 1) })

// what does the variable `phoenix` return now?

phoenix.getFirstName() // how does this work?

12

Is there an easier way?
function Employee(name, startDate) {
 this.name = name;
 this.startDate = startDate;
}

Employee.prototype.getFirstName = function () {
 return this.name.split(" ")[0]
}

let phoenix = new Employee("Phoenix Carter",
 new Date(2017, 8, 1))

phoenix.getFirstName() // => Phoenix
Object.getPrototypeOf(phoenix)
// => Employee { getFirstName: [Function] }

13

14

This seems kind of nuts
True. That's a lot of code to make an object that can

respond to getFirstName(). It's not clear what's
happening. Prototypal inheritance is pretty

confusing.
But it's important to know about it and be able to

recognize it when you see it.

15

We do have a better way!
class Employee {
 constructor(name, startDate) {
 this.name = name;
 this.startDate = startDate;
 }

 getFirstName() {
 return this.name.split(" ")[0]
 }
}

let phoenix = new Employee("Phoenix Carter",
 new Date(2017, 8, 1))
let alex = new Employee("Alex Corey", new Date(2018, 3, 2))

phoenix.getFirstName() // => Phoenix
alex.getFirstName() // => Alex
Object.getPrototypeOf(phoenix) // => Employee {}

16

A couple of questions
→ I thought JS didn't have classes
→What is this again?

17

class != class
ES2015 introduced new keywords to make it look like

JavaScript has class-based inheritance. It doesn't
actually have class-based inheritance, but it also
doesn't really matter, given that the new keywords

work just like class-based inheritance.
So why do we have to know this? Primarily for

reading others' code.
18

Looking at this one more time
this is one of the more confusing things in

JavaScript. We can think of it as "the object on which
this method is defined," but as we will see later,
that's not always the case. It is the object that

invokes the function where this is used -- whatever
is on the left-hand size of the period.

19

instanceof

instanceof lets us know if an object is of a particular
class (that is, has a particular prototype).

let phoenix = new Student("Phoenix")
console.log(phoenix instanceof Student) // => true

https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Operators/instanceof

20

What didn't we cover?
→ Inheritance
→ super

→ class expressions
→ static

→ getters and setters

21

Three OO
Design Tips

22

Do one thing well
You may hear this referred to as "the Single Responsibility

Principle."

One way to think of this is that a class should only have one
reason to change. Imagine you're making a payroll system.

The class that calculates the amount of a paycheck shouldn't
be the class that actually pays people. If they were, you would
have to change it if you changed how pay was calculated and
if you changed the method by which people were being paid.

23

Don't do too much in the constructor
// nope
class Game {
 constructor() {
 this.randNum = Math.random()
 console.log("Game starting...")
 }
}

// yep
class Game {
 constructor() {
 this.randNum = Math.random()
 }

 run() {
 console.log("Game starting...")
 }
}

24

Inject the data you need
// nope
class Game {
 constructor() {
 this.randNum = Math.random()
 }
}
let game = new Game();

// yep
class Game {
 constructor(randNum) {
 this.randNum = randNum
 }
}
let game = new Game(Math.random());

25

