
Building a single-page
application with JS

AJAX & the single-page app

Asynchronous JavaScript and XML

A way of making requests programatically from your JavaScript instead of having
the browser sent the request via a link or a url in the address bar.

This way, you can get and send data to a server without having to reload the
page or go to a different page.

URL anatomy

http://www.google.com/maps/index.html?search=tacos&zip=27701

• protocol

• subdomain, second-level-domain, top-level domain

• path

• query string parameters

• ? the start of the query string
• key=value param pair
• & (ampersand character) used to add additional query params

• ACSII encoding: only characters in the ASCII char set

• e.g. space represented as %20

https://en.wikipedia.org/wiki/ASCII

HTTP Request Methods

• GET Retrieve data (e.g., HTML or JSON)
• POST: Submit data for the first time
• PATCH, PUT: Update existing data, either all or in part
• DELETE: Delete existing data

CRUD

Many web applications have a common core functionality we know by the
charming acronym CRUD, which stands for the common actions most
applications need to do:

Create some data → POST

Read some data → GET

Update some data → PATCH or PUT

Delete some data → DELETE

Status Codes

An HTTP response message includes a status code that can indicate something
about the state of the request. These are chosen by humans and aren't always
exremely precise!

• 1xx: Informational
• 2xx: Success
• 3xx: Redirection
• 4xx: Client Error
• 5xx: Server Error

200 is the response we most often want, indicating a successful request.

POST requests with Fetch

Notice that we pass a second argument to the fetch method, in addition to the url: an
object containing options that supply additional details for the request.

fetch(url, {
 method: 'POST',
 headers: { 'Content-Type': 'application/json' },
 body: JSON.stringify({ username: "pesopenguin", email: "peso@octonauts.org" })
})
 .then(function (response) {
 return response.json()
 })
 .then(function(data) {
 console.log("You have been successfully subscribed", data)
 })
 .catch(function(error) {
 console.log("Something went wrong", error)
 })

