
Ready for more?

CSS Layout

The default arrangement for elements is one thing a2er another
top to bo5om, according to the html.

Box Dimensions with Width and Height

By default a box will be just big enough to hold its contents, but
you can set exact dimensions with the width and height
proper:es.

width: 100px;
width: 50%;
width: 30 rem;
height: 200px;
height: 10rem;

Centering

To horizontally center a single block-level element rela6ve to the
horizontal size of the window or its parent element, you can let the
browser figure it out:

margin: 0 auto;

For more complicated scenarios and considera0ons, see CSS-Tricks'
excellent Guide to Centering in CSS

https://css-tricks.com/centering-css-complete-guide/

The Display Property

This powerful property lets you change the behavior of the
rectangular boxes (which is how we think about elements in a
layout) on your page.

display: inline;
display: block;
display: inline-block; /* inline flow but can have height and width */
display: none; /* hidden from view but still in the dom */

display: flex
aka

Flexbox
aka

The Flexible Box Layout Module (no one calls it that)

Flexbox

Flexbox is one of three major ways to lay out web pages, along with
floats and grid.

With flexbox, we fill one-dimensional containers with mul8ple
blocks that grow and shrink to fit the current page size.

To use it, you need to use mul/ple proper/es in conjunc/on with
each other. It's important to have a conceptual understanding of
how it works.

.container {
 display: flex;
}

Using Flexbox

One trick to using flexbox is to think about the proper4es that go
on a parent element (the "flex container"), and the proper4es that
go on the element (the "flex items").

CSS-Tricks: Complete Guide to Flexbox

https://css-tricks.com/snippets/css/a-guide-to-flexbox/

Why is it called "flex"?

The idea of a flexible layout is that it gracefully expands, resizes, or
wraps according to the available space. If there is no extra space
available, the effects of flexbox won't be obvious or seem to apply.

• You may need to resize your browser window to see if your
flexbox proper7es are having the intended effect.

• You may need to add a height to a flex container if your flex-
direction is set to column so that you create extra space to
distribute.

flex-direction

The default flex-direc1on is row, which is horizontal.

The main axis goes in the same
direc1on as the flex-direc1on

The cross axis is perpendicular
to the flex-direc4on

Values for flex-direction

Changing the value of flex-direction rotates the main axis.

Items will be laid out either in rows or columns, in order from le5 to
right or right to le5, depending on the direc8on of the main axis.

flex-direction: row; /* default; horizontal in order left to right */
flex-direction: row-reverse; /* horizontal in order right to left */
flex-direction: column; /* vertical, in order top to bottom */
flex-direction: column-reverse; /* vertical, in order bottom to top */

flex-wrap

Flexbox tries to fit all your flex items on one line by default, which
may resize your flex items.

But if you want them to wrap to the next line to accommodate
their size, you need to set the flex-wrap property.

flex-wrap: nowrap; /* default; items will squish on one line */
flex-wrap: wrap; /* nicely wrap them from line to line as needed */

visual demo on CodePen

https://codepen.io/team/css-tricks/pen/1ea1ef35d942d0041b0467b4d39888d3

Aligning flex items

justify-content and align-items depend on the direc-on
of the main axis.

justify-content arranges items along the main-axis, in the
same direc3on as flex-direc3on
align-items arranges items along the cross-axis, perpendicular
to flex-direc3on

align-content

use with flex-wrap

Tells the flex container what to do about the extra space along the
cross-axis, similar to how justify-content works on the main-
axis.

It doesn't do anything if your content takes up all the width along
the ver8cal axis. That is, it is helpful when you have content that
wraps

The flex shorthand property
• flex-grow - how flex-items should take up any extra space. A value of 1 means distribute the available

space equally among all items. A value of 0 (the default) means the items do not grow.

• flex-shrink (opConal) - how small items should get when their container gets smaller

• flex-basis (opConal) - this is value used as a reference point to calculate the sizes for grow or shrink.

You can just use the shorthand property flex and let the browser figure out what the other values should be.

.flex-item {
 flex: 1;
}

CSS-Tricks Flex shorthand property

https://css-tricks.com/almanac/properties/f/flex/

Floats
If you're using flexbox, you really should not have to use floats at all. It comes in handy
some;mes, though, especially when you want to get text to wrap around images.

Se#ng the float property takes an element out of the normal flow and moves it to
the le9 or right of its containing box. It will "float" into that posi@on un@l it touches
the edge of the box or bumps into another floated element.

float: left;
float: right;
float: none;

MDN float property

https://developer.mozilla.org/en-US/docs/Web/CSS/float

Responsive Layout

Front-end developers need to think about the size of the screen
that will display a page.

Responsive design means crea0ng a layout that can adapt to the
size of the window that is displaying it.

The viewport meta tag

You need this tag in the head sec/on of your page to allow the
page to resize.

<meta name="viewport" content="width=device-width, initial-scale=1">

MDN viewport meta tag

https://developer.mozilla.org/en-US/docs/Mozilla/Mobile/Viewport_meta_tag

Techniques to create responsive layouts

1. A flexible, grid-based page structure

2. Flexible images

3. Media queries

The Grid

Designers rely on the intrinsic order of columns and rows to give
meaning and shape to page structure.

A grid structure guides the arrangement and spacing of the boxes
on the page.

Material Design example of a responsive grid

https://material.io/design/layout/responsive-layout-grid.html

Making a flexible grid

• Use percentage measurements for elements inside your
container

• Include margins

• Grids don't have to be a certain number of columns or even
columns of equal size

• For your grid container, consider px or rem for width and % for
max-width

Flexible images

img {
 max-width: 100%;
 height: auto;
}

The max-width property ensures that the image width will not
exceed the size of its container.

The height property will maintain the image's aspect ra4o.

Media Queries
@media screen and (max-width: 1024px) {...}
@media screen and (min-width: 768px) and (max-width: 1023px) {...}
@media print {...} /* if the page is printed by the user */
@media (max-width: 576px) {...} /* applies to all types */

Media types to keep in mind are print and screen. Including a media
type in a media query is op7onal.

Breakpoints

Device sizes are going to change all the 1me, so don't worry about
ge:ng the perfect ones. Use whatever makes sense to you.

People do like standards, so here are some, taken from Bootstrap 4.

phones: >= 576px
tablets: >= 768px
desktops: >= 992px
big desktops: >= 1200px

Bootstrap 4 responsive breakpoints

https://getbootstrap.com/docs/4.0/layout/overview/%23responsive-breakpoints

Basic Web Design principles for developers

• typography and whitespace

• principle of least surprise

• aim for clean and simple

• judicious use of color

• start only with black and white; add color last and with purpose

• rely on neutrals then choose a base color and an accent color

7 Rules for Crea-ng Gorgeous UIs

https://medium.com/@erikdkennedy/7-rules-for-creating-gorgeous-ui-part-1-559d4e805cda

